A
TECHNICAL REP#IRT §5-§

[ 4
W. M. WONHAM A LYAPUNOV METHOD FOR THE

ESTIMATION OF STATISTICAL AVERAGES

JUNE 1965

Ls T a—"

(NASA CR OR TMX OR AD NUMBER)

CENTER FOR DYNAMICAL SYSTEMS

‘ l GPO PRICE

STl PRICES) $ —
, J0
)

{THRU)

Y FORM so0R

&
(N
W
\m

CF

Hard copy (HC)

Microfiche (MF) —




A LYAPUNOV METHOD
FOR THE

ESTIMATION OF STATISTICAL AVERAGES

W. M., WONHAM

fThis research was supported in part by the National Aeronautics
and Space Administration under Grant No. NGR - 40 - 002 - 015, and
in part by the United States Air Force through the Office of
Scientific Research under Grant No. AF-AFOSR-693-65.




P

<

=

A LYAPUNOV METHOD FOR THE ESTIMATION OF STATISTICAL AVERAGES

1. INTRODUCTION

We consider a randomly perturbed dynamical system described by
the equation

dx/at = f(x) + G(x)e(t) , t 2z 0, (1)

where x,f are n-vectors, G is an n X n matrix and &(t) is n-dimensional
Gaussian white noise. Such equations arise in control theory [1], and
the theory of random vibrations [2]. In these applications it is of

interest to know under what conditions the process
X = (x(t), t 20}

generated by (1) is stable, in the sense that X admits a unique in-
variant probability distribution. If X is stable then it is often
desirable to estimate various stationary averages €(L(x)}, when these
averages exist.

In a previous paper [3] a criterion of Lyapunov type was given for
stability in the sense described. In the present.note a Lyapunov
criterion (Theorem 3.1) is obtained for the existence (finiteness) of
the stationary average €{L(x)} where L is an arbitrary nonnegative
function. This result is applied to show that algebraic moments of all
orders exist when, in (1), G is bounded and the unperturbed system

dx/dt = f(x) is of Lur'e type.

The existence criterion is extended to yield an effective method
of calculating an upper bound for €{L(x)} (Theorem 4.1). The method is

illustrated by an example from control theory.
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2. STATEMENT OF THE PROBLEM

We start with a precise version of (1), namely Ito's equation

ax(t) = f(x(t))dt + G(x(t))dw(t)
tz0 (2)

x(0) = X

The following assumptions are made with respect to (2):
(i) x,f are vectors in Euclidean n-space E (n 2 2) and G is an

n X n matrix.
(ii) {w(t) ; t z 0} is a Wiener process in E
(iii) x, is a random variable independent of the process w(t).
(iv) There is a constant ¢ > 0 such that
| £(x)-£(9)| + | 6(x)-6(¥)| < el x-¥]

for all x, y € E. (Here l-l denotes Euclidean norm of a vector

or matrix.)
(v) There is a constant € > 0 such that
1 ] 2
y'&(x) G(x)'y 2 €|y

for all x,y € E. (A prime denotes transpose of a vector or

matrix).

Under these assumptions it is known (cf. [3]) that (2), interpreted

in the sense of Ita,defines a continuous, strongly Feller process
X={x(t), tz0}.

The differential generator of X will be denoted by I , where
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L (a7 = 3 erl6(x)e(x) (3] + £(x)'u (%) (3)

whenever the indicated derivatives exist. (In (3), u_is the vector of
first partial derivatives of u and uyy 1s the matrix of second partial
derivatives).

In the following we shall always assume that X is positive [L].
Under these conditions it is known [4] that there exists a unique in-
variant probability measure u defined on the Borel sets B € E: that is,

if P denotes probability measure on the paths of X, and if
P(x_¢ B) = u(B)
then

P(x(t)e B) = u(B), t>0.

An effective criterion for positivity of X is given in [3].
Let L(x) 2 O be Holder continuous on the compact subsets of E.

The main problem is to obtain a sufficient condition that

e(L(x)} = J L(x)u(dx)

be finite. Subsequently we shall describe a method for deriving an upper
bound on €{L(x)}.

In the following, the terms smooth, and normal domain, have the

same meaning as in [3].

3. A CRITERION FOR EXISTENCE OF €{L(x)}

A Lyapunov criterion for the existence of €{L(x)] can be derived

by arguments very similar to those of [3] and [4]. The result is given
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in Theorem 3.1. We start with some preliminary lemmas.

Let D be a normal domain with boundary I', and let 1, be the first

r
time X hits I Let EX denote expectation on the paths of X when x(0) =

= x € E. Since X is positive, SX(TF) < w x € E - D.

Lemma 3.1

Let
T

T
u(x) = €_{ (f) Ll x(t)]at}

If u(xo) < = for some point x € E - D then u(x) < » for all x € E - D.

Furthermore

L u(x)]
u( x)

- L(x), x€e E-D

0, x eT, (%)

Proof,

The proof closely follows that of Lemma 5.3 of [U4]. Let (Dn;n=1,2,...]

be an increasing sequence of normal domains such that DC.Dl, xoeDl- D and

limD =E (n > ®), Let T, be the first time X hits the boundary I'UT_

of D - D, and define
n T

n
un(x) = Sx[ £ Lix(t)ldat}), x e ﬁn- D

r

u(x) = E!x[ [ 1[x(t)ldat}, x e E - D,
o
Since X is positive (and hence, regular [4]) 4 Tp (n & =) and therefore
un(x) # u(x) (n 5 ), For fixed mz 1

u(x) = wy(x) + Llu o (x)-u (x)], xD - D, 2

with convergence at least for x = X . We now use the fact that un(x) is the




unique smooth solution of

H

L [w,(x)] = — L(x), x €D - D.

]

un(x) 0O, xe TUT .

(see e.g. [5], Ch. 5, §5). Let vn(x) = um_l(x) - un(x), X € ﬁn- D. Then
I[vn(x)]= 0, x €D - D and (since un(x) 2z 0) vn(x) 20, xe TUT .

By the maximum principle v (x) 2 0, x € D - D. It follows that all terms
of the series (5) except the first are positive functions for which
I,[v(x)] = 0, and the series converges for x = x . From the generalized
Harnack inequality [11] it follows that the series converges for all

X € Em’ D and u(x) satisfies (4) for x € D_- D. Since m is arbitrary

the result follows.

Lemma 3.2

A necessary and sufficient condition that

e{L(x))} < =
is that T
T
e { J Ux(t)lat} <=, xekE. (6)
X o
Proof.

We use the construction and notation of [4]. Let lee & normal

domain with boundary I', such that DC D1 and T N ]']‘_= ¢. Let T denote

1
the length of a cycle, namely, in obvious notation,

T =min (t : x(t) € | x(0) €T and x(s) € I} for some
8, 0 < s <t}.

Let 1 be the finite invariant measure (see [4]) induced on the Borel

sets of I'. Then if K is an arbitrary compact subset of E we have, within

R o R Lo e -
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a constant of normalization,
~ K
(k) = [ n(ax)e (7] (7)
r

where TK =meas {t : 05t = 1, x(t) € K}.
Let Ln(x) be an increasing sequence of simple functions (constructed
on compact sets) such that Ln(x) =0 (x| >n) and Ln(x) p L(x) (n =),

From (7)

[ w(ax)L (x) = [ u(ax) e { [ L [x(t)lat},
E r °©

n= 1,2,...;

and by monotone convergence
T
e(L(x)) = [ W(ax) €_{ J L[x(t)]at). (8)
r o

Let 7, = min {t : x(t) € Fllx(O) € T'}. By the strong Markov property

T

T 1 i T
ex(j(; Lx(t)]at) = e ([ Lix(t)lat) + sx{ex(Tl){(f) PL[x(t)]dt}},

x €I, (9)

Since ﬁl is compact the first expectation on the right side of (9) is

bounded for x € I' If

r

wy) = e () Ux(t)lat) <=, yeT,

then, by Lemma 3.1, u(y) is smooth, and therefore bounded on T By the

1
strong Feller property, Sx{u[x(rl)]} is continuous, hence bounded on T ;
it follows from (8) that €{L(x)} < = .

Conversely if (6) fails for some x € E - D then by Lemma 3.1 (6)

fails for all x € E - D, and by (8) and (9), €{L(x)} = = .




Lemma 3.3

If the equation

,t[v(x)]:-—L(x) ,x€E-D

has a smooth positive solution v(x) in E - D

then

T.

T
e (] Ux(t)lat} <= .
(o]
Proof

Let {Dn ; n=1,2,..} be a sequence of normal domains constructed
as in the proof of Lemma 5.1, and let un(x) be the corresponding sequence

of smooth functions such that
at[un(X)] = -L(x), x €Dp- D
un(x) =0, xeTU -

Since °C[v(x) - un(x)] =0, x €D - D, and v(x)-un(x) 20, xeTUT,

we have un(x) s v(x), x € Bn- D ; therefore

n

By
ex{é I[x(t)]dt} = 1lim u (x)

A

v(x), x € E.
This completes the proof.
Before stating Theorem 3.1 we introduce a class of real-valued

functions V, analogous to Lyapunov functions, with the following properties.
P, : V is defined for x ¢ ﬁv where
D_={x:x| > R} (R < » is arbitrary)

v

P2 : V is continuous in ﬁv and is twice continuously differentiable in Dv‘

P, : V(x) 2+ was |x| »w».

3
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Theorem 3.1

Let X be positive. If there exists a function V with properties

Pl'P5 and if

L1015 - Lx), x D

then

E{L(x)} <=,

We remark that if X is positive and L(x) is bounded then £{L(x)} is
obviously finite. If L(x) is bounded away from zero for x ¢ Dv then, by

Theorem 2 of [3], the existence of V already implies that X is positive.

Proof

By Lemmas 3.2 and 3.3 we have that €{L(x)} < o if and only if there

exists a normal domain D such that the equation

Liux)1 = - L(x) (10)

has a smooth positive solution u(x) defined for x € E - D. Let D =E - D, and
define a sequence {Dn} of normal domains as in the proof of Lemma 3.1. The
remainder of the proof follows that of Lemma 3.3,with v(x) replaced by V(x).
By adding a constant to V if necessary we can arrange that V(x) 2 0, x € Bv.
1f Llu (x)]= - L(x) (x €D_-T), u(x) =0 (xeTUT,), then

0= un(x) s un+l(x) s V(x), x ¢ ﬁi- D. It follows by a compactness theorem

([6]p-34k4 ) that 1lim un(x) exists and is a solution of (10) for x € E - D.

Remark. The proof of Theorem 3.1 remains unchanged if property P3 of V is
replaced by

PL: V(x)z0, xe ﬁ; .

W




4, ESTIMATION OF €{L(x)}.

In this section we assume that £{L(x)} < ® and derive an upper
bound for this quantity. The result is given in Theorem k.1.

For x € E and t > 0 define
t
u(tyx) = Sx[ [ 1{x(s)]as].
o
Lemma 4,1

If e{L(x)} < = then u(t,x) <= for all t >0, x € E.

Proof.

We use the notation and construction of the proof of Lemma 3.2 and

assume x € I. If 7 is the length of a cycle which starts at x then

(ef. (9))
T
e { ] Ux(s)]ds)
o
is bounded for x € I'. With t < ® and fixed, let v(x) denote the number

of complete cycles which occur in the interval [0,t) when x(0) = x ¢ T.

Obviously u (t,x) < = if € {v(x)} <= . Let p

min{|x-y| : x e, y e I‘l} .

By our assumptions, p > 0; and if € > O

Px{'r <e€}s Px{ogg.:éce | x(s) - x|

v

e}
= 0(€3/2) as € -0,

wniformly for x € I'. (The last estimate can be derived as in [7],VL,§ 3.).
Consider a chain of n cycles starting at x with lengths TypeeesTye By

the strong Markov property

Px{v(x) =n} s Px{'l’l+...+ T, < t}
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< [ sup PX[T <t}11" < (ct5/2)n
xel’
where ¢ is independent of t, and t > O is sufficiently small. Therefore
sup[ex(v(x)] : xeI'} < o for some t > O, hence (by continuation over a

finite number of subintervals) for every t > O.

Lemmsa 4.2

If €{L(x)} <« then

e{L(x)} = lim t‘lu(t,x) (11)
t— o

Proof

Let Ln(x) (n = 1,25...) be a sequence of nonnegative simple functions
such that Ih(x) A L(x) (n > ) and Ln(x) = 0, |x| >n. By the corollary to

Theorem 3.1 of [4],

-1 t
lim lim t € L s) jds
lm = lin ! J(; n[X( ) lds}

lim e{L
lim (L, (=)}

e{L(x)} (12)

Let P(t,x,B) be the transition function of X. If u is the invariant

measure of X then, by repeated applications of Fubini's Theorem,

e(e, (+7 [*1,[x(s)]as))

[ u(dx)t-lété B(s,x,dy)L_(y)ds

A w(ay)L (y)ds
°E

L

E{Ln(x)}.
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Passing to the limit (n — @) we have by monotone convergence
-1
e(t™ u(t,x)) = e(L(x)} . (13)

Now let Xn(x) =1, Ix] 2n ; = 0, otherwise. Suppose that for some
€ >0 there exists a sequence t 4 = and a subsequence n(v) of positive

integers such that

t
ex{t;l,g VXn(v)[x(s)] Ux(s)lds} > ¢, v =1,2,... (1h)

From (13) and (14) it follows that
S{Xh(v)(x) L(x)} >e, v=1,2,...,
which contradicts the fact that €{L(x)} < = . Hence for each fixed x € E,
-1t 1t
€ {(t7fL [x(s)las) »e_(t7 [ 1[x(s)]ds}

x o I x °
as n o , uwniformly in t for t sufficiently large. We cantherefore interchange
limits in the left side of (12), and the result (11) follows by monotone
convergence.

We consider functions V with properties P where these differ

LY
from properties Pl-P5 of section 3 only in that now we require Dv = E.
Theorem 4.1

Let X be positive, JIf there exist a function V with properties

'fll.% and a positive constant k such that

Livinrsx-ux), x &

then

e{L(x)} g k.
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Proof

We first show that €{L(x)} < » . Indeed if D is a normal domain
with boundary ' and if v(x) = € (7} then Liv(x)] = -1 (x¢ E - D)
and v(x) = 0 (x€'). It follows that the function V(x) + kv(x) satisfies the

conditions of Theorem 3.1.

Let D = {x : |x| <n} and put T, = min {t : |x(t)]| = n x(O) =

=x €D }. Let t = min(t,7 ) and define
n n n

t
a,(t,x) = €. "L{ x(s)1ds]

t>0, x €D, (n=1,2,...). Since T 4 (n » =) we have uh(t,x)1u(t,x).

We now use the fact that un(t,x) is the unique smooth solution of the problem

Lo (6,07 - du_(£,0)/3% = - Lx),
t >0, x ¢ Dn

0, x € Dn

un(O,x)

]

un(t,x) 0, t>0, |x =n

(see e.g.[5], Ch. 5). We can assume that V(x) 2 0, x € E. If Wh(t,x) =

= kt + V(x) - un(t,x) (tzo0, xe€ En) then
of[wn(t,x)]- awn(t,x)/at £0;

W (0,x) 2 0 ; and Wn(t,x) 2 0, |x}] = n. By the maximum priciple for

v

parabolic equations W (t,x) 2 0 (t 2 O, X € D) ; that is u (t,%) S kt + V(x);
hence

u(t,x) = kt + V(x) , +t 2 0, x € E,

The result now follows from Lemma 4.2,




5. APPLICATIONS

EXAMPLE 1

Let X satisfy the It0 equation

dx

Fxdt - bp(o)dt + G(x)dw

0=c'x (15)

In (15), F is a constant matrix, b and c¢ are constant n-vectors, and $ is
a scalar-valued, in general nonlinear, function of g. The non-stochastic
differential equation, obtained from (15) by setting G = 0, has been

studied extensively in connection with the Lur'e problem [8].

Theorem 5.1

Let the system (15) satisfy the following conditions:

(i) A1l the eigenvalues of F have negative real parts

(i1) o ¢(0) >0 for all |o| sufficiently large; b(o) is

continuously differentiable; and d¢(oc)/do is bounded

(- m< o< ™ .

(1ii) There exist two nonnegative constants & and B such that

a+ B >0
and

Re(a + iup) ¢ (iawI-F)™1 b >0

for all real w.

(iv) G(x) satisfies the conditions of section 2 and, in addition,

| 6(x)| is bounded for x e E.

Then X is positive and

S{{xlv} < =

for every v > O.
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Proof.

The positivity of X was proved in [3]. To satisfy the conditions

of Theorem 3.1 we introduce a function ;(x) of the form
e'x
V(x) = x'Px + B [ ¢(o)do
o

and define

V(x) = exp(¥ V(x))

where ¥ > O will be chosen later. By a result of Meyer [9] there exist

positive definite matrices P and Q such that
[Fx-be(c'x) ] vx(x) S -x'Qx (16)
for all lxl sufficiently large. Moreover
32 G(x) 6(%) " Vo (%) ]
2
= tr[G(x)G(x)'P] + 28| G(x)'c| “d¢(c'x)/do (17)

Since the right side of (17) is bounded it follows on addiﬁg (16) and

(17) that, for arbitrary 3 > O,
LV(x)] s ~(1-8)xax (18)
for all | x| sufficiently large. Let 5€(0,1) be fixed. Now

exp(-7 V(x)) £ [V(x)]

r L% + 377 [o(x)" ¥ ()7

y £I%x)T + 2v°]6(x)' [2Px + po(c'x)e]|®

1A

-7 (1-3)x'Qx + Yex'Rx (19)

for some positive definite constant matrix R. Since Q is positive definite

the matrix (1-8)Q-YR is positive definite for v > 0 sufficiently small.
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Then, for |x| sufficiently large
L1071 5 - explr ()
=-]qVY.

The result now follows by Theorem 3,1,

Remark.

It is clear from the proof that, under the conditions of Theorem 5.1,

€{L(x)} < = provided
2
L(x) = Ofexp(6]x[7)]1 (|x| —=)
for 8 > 0 sufficiently small.

EXAMPLE 2
We shall illustrate the application of Theorem 4.1 to the analysis

of a simple control system. Suppose

Xl = X2
5(2 = =% _*(xl + X2) (20)
f
where
I, yz1
¥Wy) =< vy Iyl s1
-1, y= -1

The null solution X = %5 = 0 is asymptotically stable. If the system
is perturbed by Gaussian white noise it is of interest to estimate the
2
mean square error e{xl]. The prior verification that X is positive will be

omitted. Introducing‘perturbation terms and making the change of variables
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X, = X, X+ X5 =y, we obtain
dx = -(x-y)dt + a,,dw, + a,,dv,
(21)
dy = -¥(y)dt + ay AW, + a,,dw,
where Wys Wy are independent l-dimensional Wiener processes and the

coefficients aij are constants. The differential generator of the (x,y)

process 1is

Jz[u] = Au + 2Buxy + Cuyy-(x-y)ux - \k(y)uy
where

2 2
= (all + a12)/2

>
1

B = (81935 + 81585)/2

Q
!

2 2
= (a21 + a22)/2
To satisfy condition (v) of section 2 we assume that 81855 = 815857 £ 03
in applications such a restriction is clearly not significant.
To estimate S[xg] we try to construct a positive function V(x,y)

with continuous second derivatives such that

2

L1v(x,y)] s k-x (x,¥ € E)

for some positive constant k. As a first step we assume that the perturb-

ation terms are absent from (21) and evaluate

v (x,y) = £°°x(t)2dt (x(0) = x, y(0) = ¥).
The result is

Vv (x,y) = x2/2 + xy/2 + yz/h s |yl s 1
x2/2 - X + Xy - y2/2 + P/5

+ et V(xoy-1)/2 + 17/12, y2 1

=V (-x,-y) , ys-1. (22)
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From (22) we find that Voxx s V°xy are continuous, but

V°yy(x,l-0) =12 , ‘ V°yy(x,l+0) =1+ x/2.

To achieve the required smoothness replace V° by Vl s Where

Vi(x,y) = V(xy) - (YDA + 0y - D2y -1
yz1
=V(xy), |yl =1
= VH(-x,-y) , y5 -1 (23)
where a > 0 is arbitrarily large. From (23),
Lrv~edy - (Jxl =, |y »=)

To cancel the term 2C|y| for large Iyl s define

2 1 2 -1
v (a3 = vy +e(lyl - 1 exp r-6(ly] - D7,
lyl 21
= vo(x)y) ’ ly‘ =1
where p > 0 isarbitrarily small. Finally, let
(2)
V(x,y) = (1+0)V  (x,y)
where v > 0 will be chosen later. Then
2 4
Livixy1 sk - x (x,y € E)  (24)

if K is sufficiently large. By straightforward estimation of the individual
terms of I[V] we can obtain a value kT of K for which (24) is true; we then
choose

k=min{krz r>0} .
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Carrying out the estimates for |y| = 1 and |y] 2 1 separately, we find

8{x2} < max (k',k")

where
] L
k' = (A+ B+ C/2) [1+ C(9C + Lp)™2]
" 2 2 3
kK" = (5/2)C” + D + (C/2)(9C” + LD)
and
D = A+ 2B+ |B| + 3¢/2

To obtain a rough idea of how conservative the bound may be in
this case, suppose that A=~ 0, B~ 0, C » o . Then

e(x2} < k' ~ bt (25)

Analysis of the system (21) based on 'statistical linearization' [10]

of the nonlinear function ¥ yields

14

e(x7) ~ (m/2)c® C o) . ' (26)

The qualitative agreement between the results (25) and (26) is due to
the special choice of the function Vo «  We should emphasize that the

upper bound (25) was derived rigorously; the estimate (26), although

probably reliable, was obtained by a heuristic procedure.
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